阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)-微積分
>
103年 - 103 國立中山大學轉學生招生考試試題_應數系二年級:微積分#116874
>
題組內容
2.
(b) Evaluate
dx. [10%]
其他申論題
5. The function f(x,y)=2x3+6xy2-3y3-150x has four stationary points. Among the four, the two saddle points are__(5)__.
#499440
(a) If x2y +y3 = 2 and y(1) = 1. Find y'(1) and yn(1) by implicit differentiation. [10%]
#499441
(b) Find all relative extreme values of f(x) = 2x3 -3x2-12x+4. [10%]
#499442
(a) Evaluate cos2 x sin x dx. [10%]
#499443
(a) Find the interval of convergence of . [10%]
#499445
(b) Find the sum in (a) for x inside the interval of convergence. [10%]
#499446
(a) Find the shortest distance from the point (2,0, 1) to the plane x+y+z=1.[10%]
#499447
(b) Find the maximum and minimumn values of f(x, y, z) = 2x +y+z+4 subject to the constraint x2 + y2 + z2=6.[10%]
#499448
(a) Evaluate the triple integral ∫∫∫Ω(x + 2z)dV, where Ω=(x,y,z)|0≤x,0≤y,1≤x2+y2+z2≤4}[10%]
#499449
(b) Evaluate the line integral ∫c(y dx -xdy), where C is the curve x= t2, y=et2, 0≤t≤ 1,from (0,1) to (1,e). [10%]
#499450