阿摩線上測驗
登入
首頁
>
中山◆資工◆離散數學
>
109年 - 109 國立中山大學_碩士班招生考試_資工系(甲組):離散數學#105758
>
2. If a, b ∈ Z⁺, and both are odd, prove that 2|(a
2
+ b
2
) but 4 (a
2
+ b
2
).
其他申論題
17. 有一新型「打地鼠」遊戲機,機台上有 25 個洞,分別標示整數坐標(格子點),如圖。 老闆將這 25 個格子點各作成一支籤,並放置於籤筒。每位遊戲者先從籤筒中同時抽出 兩支籤,並依照抽出籤所對應的洞各擊一槌,假設每支籤被抽中的機率相等。若所擊 的兩個洞的中點也是格子點,則僅有中點所在的洞冒出 100 元獎金,且遊戲結束;若 所擊的兩個洞的中點不是格子點,則機台上的 25 個洞皆會伸出《遊戲結束》的牌子, 表示這局結束。依上述規則,只玩一局可得 100 元獎金的機率為 ______ 。(化為最簡分數)
#450097
19. 若經銷商進貨 x 台儀器的成本費用為 (萬元),試求此經銷商預估 最多可獲利的金額是多少?(10 分)
#450098
(a) no container is left empty?
#450099
(b) the third container has an even number of balls in it?
#450100
(a) How many closed binary operations functions f: A X A - A are there?
#450102
(b) How many of these closed binary operations are commutative?
#450103
4. An auditorium has a seating capacity of 900. How many seats must be occupied to guarantee that at least two people seated in the auditorium have the same first and last initials?
#450104
5. In how many ways can 3600 identical envelopes be divided, in package of 25, among five student groups so that each group get at least 150, but not more than 1000, of the envelopes?
#450105
(a) each summand must appear an even number of times;
#450106
(b) each summand must be even.
#450107