阿摩線上測驗
登入
首頁
>
轉學考-機率與統計學
> 102年 - 102 淡江大學 轉學考 機率與統計學#53094
102年 - 102 淡江大學 轉學考 機率與統計學#53094
科目:
轉學考-機率與統計學 |
年份:
102年 |
選擇題數:
0 |
申論題數:
10
試卷資訊
所屬科目:
轉學考-機率與統計學
選擇題 (0)
申論題 (10)
(a) Calculate P(A\B).
(b) Are A and B independent events?
(a) Determine the joint and marginal probability distributions of U and V.
(b) Find out whether U and V are dependent or independent.
3. (15%) Suppose we choose arbitrarily a point from the square with corners at (2,1), (3,1), (2,2), and (3,2). The random variable X is the area of the triangle with its corners at (2,1), (3,1), and the chosen point. Compute E[X],
(a) IF I = [a,β] (with
a
andβunknown, a <β. Find the maximum likelihood estimates (MLEs) for a and β.
(b) + 1]. Find the MLE for 6.
(a) Find the decision rule with the approximate size a of the test.
(b) Find the approximate power function of the test.
【已刪除】6. (15%) Suppose we have a dataset x
1
,...,x
n
that may be modeled as the realization of a random sample X1, • • •, Xn from an Exp
distribution, where A is unknown. LetS
n = X
1
+••• . + X
n
. Construct a 90% confidence interval for A when n = 20. (The quantiles of the Gamrna(20,1) distribution are q
o.o5
= 13.25 andq
o.95
— 27.88. Denote the value of the sample mean by 亍20).