阿摩線上測驗
登入
首頁
>
轉學考-線性代數
> 92年 - 92 淡江大學 轉學考 線性代數#56121
92年 - 92 淡江大學 轉學考 線性代數#56121
科目:
轉學考-線性代數 |
年份:
92年 |
選擇題數:
0 |
申論題數:
11
試卷資訊
所屬科目:
轉學考-線性代數
選擇題 (0)
申論題 (11)
【已刪除】1. Let A=
• Find det(A). (10 points)
2. LetT: R
3
→ R
2
be a linear transformation and
T(l,0,0)=(l,-2),T(l,l,0)=(l,3), T(0,0,l)=(2,-1). Find
T(x,y,z). (10 points)
(a) Find general solutions of AX=0. (10 points)
(b) Find Rank(A). (5points)
【已刪除】4. Let P=
. Show that P is invertible and find p
-1
.(10 points)
5. Let T : P
2
→ R
2
be deflned by T(a+bx+cx
2
) = (a-b,c+a)
and B={1, x,x
2
},D={(1,-1),(0,1)}. Find the matrix of T corresponding to the ordered bases B and D. (10 points)
6. Suppose that {x, y} is a linearly independent set in a vector space V. Show that if T : V -> W is a" one -to-one linear transformation, then {T(x+2y), T(2x-y)} is also linearly independent. (10 points)
(a) Find the characteristic polynomial of A. (5points)
(b) Find an invertible matrix P such that p
-1
AP is diagonal. (10 points)
8. Given line L: x=z-y=y-z in R
3
, let P(x,y,z) be the orthogonal projection of (x,y,z) on L. Find P(x,y,z). (10 points)
9. Let T : V → W be a linear transformation, where V and W are finite dimensional vector spaces. Show that T is onto if and only if there exists a linear transformation S : W-» V such that TS(w)= w for all w in W. (10 points)