阿摩線上測驗
登入
首頁
>
轉學考-統計學
> 96年 - 96 淡江大學 轉學考 統計學#55963
96年 - 96 淡江大學 轉學考 統計學#55963
科目:
轉學考-統計學 |
年份:
96年 |
選擇題數:
0 |
申論題數:
14
試卷資訊
所屬科目:
轉學考-統計學
選擇題 (0)
申論題 (14)
1. Find the following integrals or limits:(每小題 6 points) (a) \x4 In^dx.
(b) ]7-~y^__dx.
(c) -dx. o(x +1)
(d) [ [(3jc2 +6^2)dydx.
(e) lim ^ + x___I.
2. Find 字 or (每小題 6 points) if ax ay In r (a)y= e3T
(b)y= —
(c)y= fl/(l +x > 0
(d) g(x,y)
3. Find the maximum and minimum values for the function f(x) = jc3 - 3 x2 -24x+5 for x on the interval [-3, 8]. (lOpoints)
4. Find the relative extreme values of f(x, y) -y" + x3 -4xy. (10 points)
5. Find the Taylor series for ^dt at x=0. (lOpoints).
6. A manufacturer of digital clocks determines that he can sell x clocks per week at price p where x and p are related by the equation jc2 +3xp+/?2 = 4400. This equation determines demand as a function of price, x=Q(p), near the point (p0,x0)=(40, 20). (a) If price is increasing at the rate of 50% per week how fast is demand changing when p=$40? (8points)
(b) Find — at the point (p0,xoM40, 20). (8points) dp