複選題

十、Let 618b64b65db90.jpg, be a linear transformation on 618b650ce04b9.jpg for a rotation by an angle θ about a unit vector
u. Specifically, we let the matrix for 618b6539d4ceb.jpg with respect to the standard basis S for 618b654a64bd1.jpg be
618b655b2e41d.jpg
where 618b6580836d2.jpg is the coordinate vector of u with respect to S, c = cos(θ)
and s = sin(θ). Furthermore, let A be the rotation matrix about the z-axis of Cartesian
coordinate system by an angle θ, i.e.,
618b65a4d6927.jpg
where 618b65d7a2186.jpg be an ordered orthonormal basis for 618b65ecb09fb.jpg with
618b66216340a.jpg and let 618b66337bfba.jpg be the change
of-basis matrix for changing basis from B to S. Which of the following statements is/are
true?
(A)618b664e3ac93.jpg, n1n2 +b1b2 + u1u2 = 0 and n1n3 + b1b3 +u1u3 =0.
(B) The coordinate vector of u with respect to basis B is 618b66a795f01.jpg.
(C) 618b66d63fc07.jpg
(D) 618b66e22395d.jpg
(E) The matrix for 618b66eea4422.jpg with respect to basis B is A.

答案:登入後查看
統計: 尚無統計資料