阿摩線上測驗 登入

試題詳解

試卷:101年 - 101 國立交通大學_碩士班考試入學試題_資訊聯招:線性代數與機率#113290 | 科目:研究所、轉學考(插大)◆線性代數與機率

試卷資訊

試卷名稱:101年 - 101 國立交通大學_碩士班考試入學試題_資訊聯招:線性代數與機率#113290

年份:101年

科目:研究所、轉學考(插大)◆線性代數與機率

10. Let A be an nxn matrix and b be an arbitrary nx1 vector. Select the incorrect arguments.
(A) If determinant det(A)≠ 0, then the system equation Ax=b has exactly one single solution.
(B) If matrix A is diagonalizable, then the system equation Ax=b has exactly one single solution.
(C) Let matrix A can be decomposed into A=QR, where Q is the orthogonal matrix and R is the upper triangular matrix: The system equation Ax=b has exactly one single solution.
(D) Let matrix A have n independent eigenvectors. The matrix A should have n distinct eigenvalues.
(E) The system equation Ax=b can be solved by Cramer's rule either the system is consistent or inconsistent.
正確答案:登入後查看

詳解 (共 1 筆)

推薦的詳解#7101752
未解鎖
題目解析 本題要求選出不正確的論述,給...
(共 1073 字,隱藏中)
前往觀看
0
0