阿摩線上測驗 登入

試題詳解

試卷:104年 - 104 國立交通大學_碩士班考試入學試題_資訊聯招:資料結構與演算法#113199 | 科目:研究所、轉學考(插大)◆資料結構與演算法

試卷資訊

試卷名稱:104年 - 104 國立交通大學_碩士班考試入學試題_資訊聯招:資料結構與演算法#113199

年份:104年

科目:研究所、轉學考(插大)◆資料結構與演算法

26. Let G =(V, E) be an undirected connected graph, where each edge e has a given length I(e)> 0. Let s be a fixed vertex of this graph and let δ(v) be the length of a shortest path from s tov. Which one of the following statements is not correct?
(A) For each vertex v ≠s, there is an incident edge e=(u,v) such that  δ(V)=δ(น)+l(e).
(B) For each vertex v≠s, choose one incident edge e=(u,v) such that δ(V)=δ(น)+l(e),the collection of these edges forms a spanning tree of G.
(C) For each vertex v≠s, choose one incident edge e=(u,y) such that δ(V)=δ(น)+l(e),the collection of these edges forms a minimum weight spanning tree of G.
(D) Bellman-Ford algorithm can find a shortest path from s to v in this case.
(E) Dijkstra's algorithm can find a shortest path from s to v in this case.

正確答案:登入後查看

詳解 (共 1 筆)

推薦的詳解#7102377
未解鎖
1. 題目解析 這個題目考察的是圖論中最...
(共 1060 字,隱藏中)
前往觀看
0
0