阿摩線上測驗
登入
首頁
>
轉學考-線性代數
>
94年 - 94 淡江大學 轉學考 線性代數#56042
>
題組內容
4. Let L :
be a linear transibnnation defined by L
(a) (5 points) Find the standard matrix representation(標準矩陣表示式)of L.
其他申論題
6. Let A be a nxn reai nsalrix. Prove that if A2 + l= 0, where 1 is the identity matrix,then n is even. (10 poinis)
#212620
【已刪除】1. (5 points) Let A and B be n x n matrices. Is If so, prove it; if not, give a counterexample(反例)and state ujicler what conditions the equation is true.
#212621
【已刪除】2. (5 points) Let a, b and c be real numbeis(實數)such that abc ≠ 0. Prove that the plane ax + by -f- cz = 0 is a subspace(子空間)of
#212622
【已刪除】3. (10 points) Let T : be a linear transformatioa. If T([l,0,0]) = [-3,1], T([0,l,0]) = [4,-1], and T([0,-i, 1]) = [3,5], find T[-1,4,2]).
#212623
(b) (5 points) Sliow that L is invertible(可逆).
#212625
(c) (5 points) Find a formula for L-1
#212626
【已刪除】5. (10 points) Let K be a vector space with basis(基底)
#212627
(a) (5 points) lYansfer this system as a matrix form Ax = b and write down A and b.
#212628
(b) (5 points) Solve the linear system by Cramer’s rule.
#212629
(a) (10 points) Find the characterisLic polynomial(特徵多項式),the real eigenvalues(特 徵值)> and the coriesponding eigenvectors(特徵向簠)of A.
#212630