阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_線性映射:one to one and onto#107850
>
題組內容
106台聯大_工數A”B
(10%) Define a linear transformationT : R
3
→ R
3
by T((1,0,0)) =(0,1,0),T((, 1, 0)) - (0,0,1), and T((0,0, 1)) = (1,0,0).
(b) (5%) Is T : R
3
→ R
3
one-to-one and onto? Why or why not?
其他申論題
(a). Prove that if ker T= {0}; then T is one-to-one.(7 pts)
#462103
(b). Suppose T is one-to-one and {u1,... ,uk} is a linearly independent set of vectors in U. Prove that [T(u1),....,T(uk)] is a linearly independent set of vectors in V.(7 pts)
#462104
(c). Define UP(t)(a polynomil of degree 2 and its standard form is P(t) = a0+ a1t + a2t2),V R3, and T(U) = Find U such that the image under T of Uis [11, 1, -1]T. (7 pts)
#462105
(a) (5%) Find a vector u = (ux, uy, uz) such that T(u) - u and.
#462106
沒有 【段考】國二英文上學期 權限,請先開通.
#462108
沒有 【段考】國二英文上學期 權限,請先開通.
#462109
沒有 【段考】國二英文上學期 權限,請先開通.
#462110
沒有 【段考】國二英文上學期 權限,請先開通.
#462111
沒有 【段考】國二英文上學期 權限,請先開通.
#462112
沒有 【段考】國二英文上學期 權限,請先開通.
#462113