阿摩線上測驗
登入
首頁
>
中山◆電機◆離散數學
>
102年 - 102 國立中山大學_碩士班招生考試_電機系(丙組):離散數學#108985
>
題組內容
1.Explain the following terms :[20%,每小題5分]
(d) Four-color Theorem
其他申論題
(二)如果老闆可以區別消費者是 A 或 B,那麼又應該如何訂價(包括會員費和每次的使用 費)?(15 分)
#467061
(a) Fundamental Theorem of Arithmetic
#467062
(b) Homeomorphic graph
#467063
(c) Equivalence relation
#467064
(a) How many positive divisors does x have? [5%]
#467066
(6) How many positive divisors of x that are divisible by 252? [5%]
#467067
(c) Determine how many positive divisors of x are perfect squares? [5%]
#467068
(a) If an equivalence relation R on set A = {1,2,3,4,5}induces the partition A = {1,3} ∪{2,4} ∪{5}, what is R? [5%]
#467069
(b) Let R={(1,1),(1,2),(2,2),(2,4), (3,3),(3,4),(4,5),(5,5)}be a relation on A. What is the relation R3 ? [5%]
#467070
4.What is the Ferrers graph? Use it to explain the statement "The number of partitions of an integer n into m summands is equal to the number of partitions of n into summands where m is the largest summand". [10%]
#467071