阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_行列式和線性方程式:行列式#107854
>
Let A, B, C, and D be nxn matrices with A invertible. Prove that det
(det A) det(
) .
其他申論題
(a) det.
#462128
(b) det.
#462129
(c) det.
#462130
(d)
#462131
Given a n X n tridiagonal matrix A as below:Please find the determinant of A when n = 2020.
#462133
(a) There exist nxn real matrices A and B such that AB-BA=I, where I is then nxn identity matrix.
#462134
(b) If A and Bare nxn matrices and det(A-B)=0,then det(A)=det(B).
#462135
(c) If A is a nilpotent matrix (namely, A is an nxn matrix such that = O for some positive integer k), then det(I + A)=1 , where I is the nxn identity matrix.
#462136
Find the values of x such that the given matrix is not invertible.
#462137
Compute the determinant of
#462138