阿摩線上測驗
登入
首頁
>
轉學考-代數
> 94年 - 94 淡江大學 轉學考 代數#56429
94年 - 94 淡江大學 轉學考 代數#56429
科目:
轉學考-代數 |
年份:
94年 |
選擇題數:
0 |
申論題數:
10
試卷資訊
所屬科目:
轉學考-代數
選擇題 (0)
申論題 (10)
Show all your work. 10 points each.
1 • Show that a group G is abelian if and only if x
2
= e for any x in G wlieie e is Ihe identity of G.
2. Prove that Z5is a lie Id.
3. Let G be a group such lhat | G | < 200. Suppose G has subgroups of order 25 and 35, find the order of G.
【已刪除】4. Let G be the set of ail rational numbers except -1. Show that (G,
) is a group, where a
b = a + b + ab for all a and b in G.
5. Let G = <a> be a cyclic group of order 30,where a is a generator of G. Determine <a
5
> and <a
2
>.
6. Up to isomorphism, Jind all groups of order 4.
7. Show that any group oi'order 35 is eyclic.
8. Find all distinct subgroups of Z
l2
.
9. Prove that every ideal of the ring of integers is principal.
10.Let G be a group and a and b are h G. Suppose a
2
= e and ab
4
a = b
7
. Show that b
33
= e, where e is tlie identity of G.