阿摩線上測驗
登入
首頁
>
轉學考-代數
>
94年 - 94 淡江大學 轉學考 代數#56429
>
7. Show that any group oi'order 35 is eyclic.
其他申論題
3. Let G be a group such lhat | G | < 200. Suppose G has subgroups of order 25 and 35, find the order of G.
#214334
【已刪除】4. Let G be the set of ail rational numbers except -1. Show that (G, ) is a group, where ab = a + b + ab for all a and b in G.
#214335
5. Let G = <a> be a cyclic group of order 30,where a is a generator of G. Determine <a5> and <a2>.
#214336
6. Up to isomorphism, Jind all groups of order 4.
#214337
8. Find all distinct subgroups of Z l2.
#214339
9. Prove that every ideal of the ring of integers is principal.
#214340
10.Let G be a group and a and b are h G. Suppose a2 = e and ab4 a = b7. Show that b33 = e, where e is tlie identity of G.
#214341
(一)10110111 是代表 10 進位多少的整數?【3 分】
#214342
(二)4810轉為 8 位元格式是多少?【3 分】
#214343
(三)這樣的表示法所能表達的整數範圍若以 10 進位表示,其起迄範圍為何?【4 分】 以上請列出計算過程。
#214344