阿摩線上測驗 登入

試題詳解

試卷:112年 - SOCIETY OF ACTUARIES_EXAM P PROBABILITY_EXAM P SAMPLE QUESTIONS 101-150#119921 | 科目:Exam P:Probability機率

試卷資訊

試卷名稱:112年 - SOCIETY OF ACTUARIES_EXAM P PROBABILITY_EXAM P SAMPLE QUESTIONS 101-150#119921

年份:112年

科目:Exam P:Probability機率

108. In a certain game of chance, a square board with area 1 is colored with sectors of either red or blue. A player, who cannot see the board, must specify a point on the board by giving an x-coordinate and a y-coordinate. The player wins the game if the specified point is in a blue sector. The game can be arranged with any number of red sectors, and the red sectors are designed so that 
 , where Ri is the area of the red sector.
Calculate the minimum number of red sectors that makes the chance of a player winning less than 20%.
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7

正確答案:登入後查看

詳解 (共 1 筆)

推薦的詳解#6961652
未解鎖
1. 題目解析 題目描述了一個機率遊戲,...
(共 1464 字,隱藏中)
前往觀看
0
0