阿摩線上測驗 登入

試題詳解

試卷:104年 - 104 國立交通大學_碩士班考試入學試題_資訊聯招:資料結構與演算法#113199 | 科目:研究所、轉學考(插大)◆資料結構與演算法

試卷資訊

試卷名稱:104年 - 104 國立交通大學_碩士班考試入學試題_資訊聯招:資料結構與演算法#113199

年份:104年

科目:研究所、轉學考(插大)◆資料結構與演算法

21. Let f(n) and g(n) be positive functions. Notation: Ign=logn=1og2n. Which one of the following statements is not correct?  
(A)f(n) = O(g(n) implies 1g(f(n))=0(1g(g(n), where lg(g(n) ≥ 1 and f(1) ≥1 for all sufficiently large n.
(B) f(n)=0(8(n)) implies 2f(n) =O(2g(n)
(C) f(n)+o(f(n)=θ(f(n))
(D) [log(logn)]!= O(n)
(E) If log f(n)=θ(logn),then f(n) is polynomially bounded.

正確答案:登入後查看

詳解 (共 2 筆)

推薦的詳解#7102385
未解鎖
1. 題目解析 這道考題主要考察了漸進...
(共 1353 字,隱藏中)
前往觀看
0
0
推薦的詳解#7102388
未解鎖
1. 題目解析 題目要求我們找出不正確...
(共 1288 字,隱藏中)
前往觀看
0
0