阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_行列式和線性方程式:行列式#107854
> 試題詳解
Find the determinant for the following matrix
(A)-5
(B) 5
(C)1
(D)-1
(E) 0
答案:
登入後查看
統計:
尚無統計資料
相關試題
複選題Which of the following statements about the determinant is true?(A) For any square matrix A, det = -det A.(B) The determinant of the n x n identity matrix is .(C) 'The deterrninant of an upper triangular mnatrix is always equal to the product of itsdiagonal entries.(D) Performing a row addition operation on a square matrix does not change its determinant.(E) Performing a scaling operation on a square matrix does not change its determinant.
#2919185
複選題Given which of the following statements is/are true? (A) det =det =0. (B) det = -40. (C) det = det. (D) det = 20. (E) None of the above are true.
#2919187
複選題Denote det A as the determinant of the matrix A, and denote as the inverse of thematrix A. Let A, B, and P be square matrices. Which of the following statementsis/are true?(A) It is always true that det AB = det BA.(B) If the columns of A are linearly dependent, then det A = 0.(C)It is always true that det (A + B) = det A + det B.(D)If A is invertible, then det (E) Suppose that Pis invertible. Then det = det A.
#2919188
複選題If there are two nxn matrices A, B and one scalar r,(A) det = det implies A = B.(B) det(rA+B) = rdet+det.(C) =detdet.(D) det = det where A and B are row equivalent matrices.(E)
#2919191
複選題Let A, B ∈ , where F = C or R. Which of the following statements are true?(A) tr(AB)= tr(BA)(B)tr(AB)=trtr(C) = tr(D) (E)tr(A±B)=tr±tr
#2919189
複選題Let A, B ∈ , where F = C or R. Which of the following statements are true?(A) det (AB) = det(BA)(B) det(AB) = detdet(C) det(B-1AB)= det(D) det = (det )'(E)det(A±B)=det+det
#2919190
Let A be an m x n matrix whose null space has dimension k. Which conclusion is correct? (A) The dimension of Null(AT) is k. (B) The dimension of row space of A is m-k. (C) The dimension of column space of A is m-k. (D) The dimension of row space of A'is n-k. (E) The dimension of column space of A is n-k.
#2952883
Let A =xyT, where t and y are two nonzero vectors of Rn, n > 1. Which of the following statements is/are true? (A) rank( A ) = 1 and the range space of A is Spanf{y}. (B) rullity( A ) = 2 and the null space of A is Spanfe,{x,y}. (C) Trace( A ) = 1 and det( A ) =0 (D) A is always diagonalizable. (E) None of the above.
#2952882
.(5%) Determine the rank of the matrix in the following. (A)0 (B)1 (C)2 (D)3 (E) 4
#2952881
11. (10%) Let Q be an n✖ n matrix. Then which of the following set is not a subspace? (A) Col O (B) Null Q (C) rank Q (D) Row Q (E) None of the above
#2952880
相關試卷
無年度 - 主題課程_向量空間:秩(rank)、零度(nullity)、維度#108952
-999 年 · #108952
無年度 - 主題課程_向量空間:基底和維度#108872
-999 年 · #108872
無年度 - 主題課程_理工學院機率論:古典機率論#108850
-999 年 · #108850
無年度 - 主題課程_向量空間:線性獨立和線性相依#108250
-999 年 · #108250
無年度 - 主題課程_理工學院機率論:機率分配(離散型、連續型)#107979
-999 年 · #107979
無年度 - 主題課程_向量空間:向量空間和子空間#107951
-999 年 · #107951
無年度 - 主題課程_理工學院機率論:多元隨機變數#107950
-999 年 · #107950
無年度 - 主題課程_理工學院機率論:單一隨機變數#107935
-999 年 · #107935
無年度 - 主題課程_行列式和線性方程式:線性方程式#107934
-999 年 · #107934
無年度 - 主題課程_線性映射:基底變換和座標變換#107933
-999 年 · #107933