阿摩線上測驗
登入
首頁
>
研究所、轉學考(插大)◆工程數學
>
108年 - 108 國立臺灣大學_碩士班招生考試:工程數學(D)#124907
>
題組內容
2. Let the matrix A =
. Then
(c) (6%) Find
, where e1 =
.
其他申論題
(i) Let v1 and v2 be n x 1 vectors. Then rank() = 2.
#531189
(j) Let A be an n x n symmetric matrix. Let v be an n x 1 vector. If Av = 0, then Av = 0.
#531190
(a) (6%) Find all the eigenvalues of A.
#531191
(b) (6%) Find an orthonormal basis for R3, consisting of the eigenvectors of A.
#531192
(d) (2%) Find the nullity of A.
#531194
(a) (4%) Find T.
#531195
(b) (6%) Find T
#531196
(a) What is the mathematical definition of a RV? (3%)
#531197
(b) What is the mathematical definition of a probability function? (3%)
#531198
(c) Consider the experiment of throwing a fair 2-sided dice, where the sample space S = {?, ?} and Prob({?}) = Prob({?}) = 0.5. Define a random variable X for this experiment and write down the probability mass function PMF of X, i.e., Prob(X=x) for all real x ∈ R. (5%)
#531199