阿摩線上測驗 登入

申論題資訊

試卷:110年 - 110 國立中央大學_碩士班招生考試_數學系/數學、應用數學組(一般生、在職生):線性代數#105306
科目:研究所、轉學考(插大)◆線性代數
年份:110年
排序:0

申論題內容

8. (10pts) Let V and W be finite dimensional vector spaces and let T : V→ W be a linear map. Recall that there exists a unique linear map Tt : W*→ V*, called the transpose of T, where V* and W* are the dual spaces of V and W, respectively.
 Consider V = R2 and W = R3. Let T : V → W be the linear map defined by 
T(a,b)=(3a+6,a-26,2a-6) 61cab3d52e458.jpg
 Then there exists a unique linear map Tt : W* →V* as above. Define 61cab411e49e2.jpgby 
61cab479e66f6.jpg
61cab455e035a.jpg
Hint: you need to either explicitly write down Tt(θ)(a,b) for any (a,b)61cab4b204d27.jpg, or simply write down a 2 x 1 matris representing Tt(θ).