阿摩線上測驗 登入

申論題資訊

試卷:110年 - 110 國立清華大學碩士班考試入學試題_數學系碩士班:線性代數#105741
科目:研究所、轉學考(插大)◆線性代數
年份:110年
排序:0

申論題內容

Notation: R denotes the feld of real numbers; C denotes the field of complex numbers. F denotes an arbitrary field; 61de4e98bf200.jpg denotes the set of all m x n matrices with entries in F. If T is a linear transformation, R(T) denotes the range of T, and N(T) denotes the null space of T. 61de4ed81e46a.jpg denotes the transpose of A, and LA denotes the linear transformation from Fn to Fm that sends each vector 61de4f142ea37.jpg
 1. (12 points) Let V and W be F-vector spaces, and let T: V →W be a linear transformation. Prove that dim R(T)+dim N(T) = dim V if V is fnite-dimensional.