阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_理工學院機率論:機率分配(離散型、連續型)#107979
>
題組內容
5. Let Ybe a uniform random variable on (0, 1). Suppose that conditional on Y =p, the random variable X has a binomial distribution with parameters n and p.
10%(a) Find the moment generating function of X.
其他申論題
Problem 11. (2.5 %) To obtain a driving license, John needs to pass his driving test. Every time John takes a driving test, with probability 1/2, he will clear the test independent of his past. John failed his first test. Given this, let Y be the additional number of tests John takes before obtaining a license. Then, (i) E[Y] =1 (ii) E[Y] =2 (iii) E[Y]=0
#462973
Problem 13. (2.5 %) Let X1, X2, X3 be independent random variables with the continuous distribution over [0,1]. Then P(X1<X2<X3) = (i) 1/6 (ii) 1/3 (iii) 1/2 (iv) 1/4
#462974
(a) (3%) Find , where the condition B ={ X ≥μx}
#462975
(b) (3%) What is E[X|B]?
#462976
10%(b) What is the distribution of X?
#462978
1. u / u / s / m / e / m ______________________________
#462979
2. t / o / s / p f / i / e / o / c / f ______________ ________________
#462980
3. o / c / k / o n / i / n / d / e / r ___________ __________________
#462981
4. e / a / r / w / t e / t / h a / p / n / l / s / t _______________ _____________ ______________
#462982
5. l / n / c / e / a y / m m / o / r / o _______________ _______________ _______________
#462983