阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_理工學院機率論:機率分配(離散型、連續型)#107979
> 申論題
題組內容
5. Let Ybe a uniform random variable on (0, 1). Suppose that conditional on Y =p, the random variable X has a binomial distribution with parameters n and p.
10%(b) What is the distribution of X?
相關申論題
Problem 12. (2.5 %) Let Xi, 1 ≤ i ≤ 4 be independent Bernoulli random variable each with mean p = 0.1. Let X = That is, X is a Binomial random variable with parameters n = 4 and p = 0.1. Then, (i) E[X1|X=2]=0.1(ii) E[X1| X=2]=0.5(iii) EXi|X=2]=0.25
#462972
Problem 11. (2.5 %) To obtain a driving license, John needs to pass his driving test. Every time John takes a driving test, with probability 1/2, he will clear the test independent of his past. John failed his first test. Given this, let Y be the additional number of tests John takes before obtaining a license. Then, (i) E[Y] =1 (ii) E[Y] =2 (iii) E[Y]=0
#462973
Problem 13. (2.5 %) Let X1, X2, X3 be independent random variables with the continuous distribution over [0,1]. Then P(X1<X2<X3) = (i) 1/6 (ii) 1/3 (iii) 1/2 (iv) 1/4
#462974
(a) (3%) Find , where the condition B ={ X ≥μx}
#462975
(b) (3%) What is E[X|B]?
#462976
10%(a) Find the moment generating function of X.
#462977
(12%) Let V be a finite-dimensional vector space and T :V →V be linear. Suppose rank(T) = rank(T2). Prove that R(T) ∩N(T) = {0}.
#467033
(13%) Given a vector space V over F. Define the dual space of V* of V as the set of all functions (also known as linear functionals) from V to F, i.e, V* {f|f : V →F}. It is obvious that V* is itself also a vector space with the addition + :V*'x V*→ V* and scalar multiplication * : F x V*→ V* defined as pointwise addition as well as pointwise scalar multiplication. Given any linear transformation T : V→ W. The transpose Tt is a linear transformation from W* to V* defined by Tt(f) = fT for any f W*. For every subset S of V, we define the annihilator Suppose V, W are both finite-dimensional vector spaces and T : V → W is linear. Prove that .N(Tt) = (R(T))0.
#467032
(10%) The nullities of the matrices BBT - λ/ for λ= 0, 1,2,3, 4 are______,________,_________,_______ respectively.
#467031
(d) (2%) Compute dim(N(Bt A)).
#467030
相關試卷
無年度 - 主題課程_向量空間:秩(rank)、零度(nullity)、維度#108952
#108952
無年度 - 主題課程_向量空間:基底和維度#108872
#108872
無年度 - 主題課程_理工學院機率論:古典機率論#108850
#108850
無年度 - 主題課程_向量空間:線性獨立和線性相依#108250
#108250
無年度 - 主題課程_理工學院機率論:機率分配(離散型、連續型)#107979
#107979
無年度 - 主題課程_向量空間:向量空間和子空間#107951
#107951
無年度 - 主題課程_理工學院機率論:多元隨機變數#107950
#107950
無年度 - 主題課程_理工學院機率論:單一隨機變數#107935
#107935
無年度 - 主題課程_行列式和線性方程式:線性方程式#107934
#107934
無年度 - 主題課程_線性映射:基底變換和座標變換#107933
#107933