阿摩線上測驗
登入
首頁
>
主題課程專用
>
無年度 - 主題課程_理工學院機率論:機率分配(離散型、連續型)#107979
>
題組內容
(6%) X is a binomial (5, 0.5) random variable.
(b) (3%) What is E[X|B]?
其他申論題
Problem 12. (2.5 %) Let Xi, 1 ≤ i ≤ 4 be independent Bernoulli random variable each with mean p = 0.1. Let X = That is, X is a Binomial random variable with parameters n = 4 and p = 0.1. Then, (i) E[X1|X=2]=0.1(ii) E[X1| X=2]=0.5(iii) EXi|X=2]=0.25
#462972
Problem 11. (2.5 %) To obtain a driving license, John needs to pass his driving test. Every time John takes a driving test, with probability 1/2, he will clear the test independent of his past. John failed his first test. Given this, let Y be the additional number of tests John takes before obtaining a license. Then, (i) E[Y] =1 (ii) E[Y] =2 (iii) E[Y]=0
#462973
Problem 13. (2.5 %) Let X1, X2, X3 be independent random variables with the continuous distribution over [0,1]. Then P(X1<X2<X3) = (i) 1/6 (ii) 1/3 (iii) 1/2 (iv) 1/4
#462974
(a) (3%) Find , where the condition B ={ X ≥μx}
#462975
10%(a) Find the moment generating function of X.
#462977
10%(b) What is the distribution of X?
#462978
1. u / u / s / m / e / m ______________________________
#462979
2. t / o / s / p f / i / e / o / c / f ______________ ________________
#462980
3. o / c / k / o n / i / n / d / e / r ___________ __________________
#462981
4. e / a / r / w / t e / t / h a / p / n / l / s / t _______________ _____________ ______________
#462982