阿摩線上測驗 登入

申論題資訊

試卷:112年 - 112 國立台灣大學_碩士班考試入學試題:線性代數(A)#130266
科目:研究所、轉學考(插大)◆線性代數
年份:112年
排序:0

申論題內容

    Notation: R is the set of real numbers, and C is the set of complex nunbers. If F=R or C, denote by (F) the n n matrices with entries in F. If A ∈ (F),denote by (F) the transpose of A. Denote by the n x n identity matrix and the n x n zero matrix.

Problem 1 :Let i = √-1∈ C be a root of X² + 1. Let
                   v₁ = (1,0,-1), v₂ = (1 + i,1 − i, 1), v₃ = (i, i, 1).
Show that {v₁, v₂, v₃} is a basis of C³ and express the vector v₄ = (1,0,1) as a linear combination of v₁, v₂ and v₃, namely find α₁, α₂, α₃ ∈ C such that v₄ = α₁v₁ + α₂v₂ + α₃v₃.