阿摩線上測驗 登入

申論題資訊

試卷:109年 - 108 國立中山大學_碩士班招生考試_電機系(甲、戊、己組):工程數學甲#125234
科目:中山◆電機◆電磁學
年份:109年
排序:0

題組內容

15. Consider the vector space $\mathcal{P}3$, the set of all real coefficient polynomials of degree less than 3, the inner product $\langle f, g \rangle := \int{-1}^1 f(t)g(t) dt$ for any $f, g \in \mathcal{P}3$. Denote $S := \{ p \in \mathcal{P}3 | p(t) = t + c, -1 \le c \le 1 \}$.

申論題內容

 (a) Describe $S^{\perp}$ as the span of a set of its basis composed of some monic polynomials, i.e. polynomials with 1 as the coefficient of their highest degrees.