阿摩線上測驗
登入
首頁
>
計算機數學
> 97年 - 97 警察特種考試_二等_刑事警察人員犯罪分析組:計算機數學(包括離散數學、機率與統計)#49127
97年 - 97 警察特種考試_二等_刑事警察人員犯罪分析組:計算機數學(包括離散數學、機率與統計)#49127
科目:
計算機數學 |
年份:
97年 |
選擇題數:
0 |
申論題數:
11
試卷資訊
所屬科目:
計算機數學
選擇題 (0)
申論題 (11)
⑴ 所有由 0 與 1 構成的字串且 0 出現的次數正好為兩次。(5 分)
⑵ 所有由 0 與 1 構成的字串且 0 出現的次數必須為奇數次。(5 分)
二、運用邏輯推論法則中的矛盾證法,證明下列推論,並說明每一步驟理由。(10 分)
三、假設 Sn 是所有 n 位的二元序列中沒有出現 010 的個數。列出 Sn 的遞迴關係及初始 條件。(15 分)
四、在某間電腦公司的上班員工中,有 80%為男性及 20%為女性。已知在男性員工中會 寫 Java 程式者是女生會寫 Java 程式者的 x 倍。若從公司內所有會寫 Java 程式的員 工中隨機抽取一位,該名程式設計人員為男性的機率為 50%。另女性會寫 Java 程式 者在女生中所佔比例是 20%。試求男生中會寫 Java 程式者在男生中所佔的比例是多 少?(15 分)
五、付 15 元投擲一個公平的骰子一次,如果出現點數為 x,則可以獲得 x2 元。試求獲利 的平均數與變異數。(10 分)
六、下列遞迴關係是 Quicksort 的平均計算時間:
其中 n 代表輸入值的個數。假設當 n≦2 時 T(n)=1,請證明 T(n)=O(n log n)。 (15 分)
七、某一電腦零售商根據過去銷售的情形分析得知,桌上型電腦佔了 20%,筆記型電腦 佔了 45%,小螢幕電腦佔了 35%。廠商為了存貨管理問題,想了解各型電腦現今銷 售情形是否仍維持不變?分析最近 200 筆銷售紀錄發現:桌上型電腦賣了 48 台, 筆記型電腦賣了 76 台及小螢幕電腦賣了 76 台。請在 5%的「顯著水準」下,檢定 現今銷售情形是否仍維持不變。(10 分)
附註:χ
2
5%,1
=3.841,χ
2
5%,2
=5.991,χ
2
5%,3
=7.815,χ
2
5%,4
=9.488
⑴ 樣本平均數。(5 分)
⑵ 中位數。(5 分)
⑶ 全距。(5 分)